Member-only story
How to Create a Python Trading Library
3 min read 6 days ago
Introduction
Creating a Python trading library allows traders and developers to automate strategies, analyze market data, and execute trades efficiently. In this article, we will go through the essential steps to build a robust trading library in Python.
1. Setting Up the Project
Before writing any code, structure your project properly:
trading_library/
|-- src/
| |-- __init__.py
| |-- data_fetcher.py
| |-- strategy.py
| |-- backtester.py
| |-- broker.py
| |-- utils.py
|-- tests/
| |-- test_data_fetcher.py
| |-- test_strategy.py
| |-- test_backtester.py
|-- requirements.txt
|-- setup.py
|-- README.md
Dependencies and Installation
To ensure smooth development, create a requirements.txt
file:
yfinance
alpaca-trade-api
pandas
numpy
matplotlib
pytest
Then, install dependencies:
pip install -r requirements.txt
2. Fetching Market Data
A trading library needs reliable market data. Use APIs like Alpha Vantage, Yahoo Finance, or Binance API.
Example using yfinance
:
import yfinance as yf